Mathematics

Test your understanding of this lesson Logarithm | Introduction:-

1)
The equivalent logarithmic form of \(1000=10^{3}\) is
  • \(\log_{3}{10}=1000\)
  • \(\log_{3}{1000}=10\)
  • \(\log_{10}{1000}=3\)
  • \(\log_{10}{3}=1000\)
2)
\(\log_{a}{m}=10\) is equivalent to
  • \(x^{a}=m\)
  • \(a^{x}=m\)
  • \(m^{x}=a\)
  • none of these
3)
\(x=\log_{a}{m}\) is equivalent to \(a^{x}=m\), where a and m are positive real numbers and
  • m>0, a>0
  • m>0, \(a\neq 1\)
  • \(a\neq 1\), m<0
  • \(m\neq 1\), \(a\neq 1\)
4)
\(3^{4}=81\) implies that
  • logarithm of 81 base 3 is 4
  • logarithm of 81 base 4 is 3
  • logarithm of 3 base 81 is 4
  • \(4\log_{}{3}=81\)
5)
\(2^{-3}=\frac{1}{8}\) can be written in logarithmic form as
  • \(\log_{}{8^{-1}}=-3\)
  • \(3\log_{}{2}=8\)
  • \(\log_{2}{8}=-3\)
  • \(\log_{2}{8^{-1}}=-3\)

Hide

Forgot your password?

Close

Error message here!

Hide

Lost your password? Please enter your email address. You will receive a link to create a new password.

Back to log-in

Close