Mathematics

Test your understanding of this lesson Set theory | Introduction:-

1)
'O is a whole number,not a natural number' using set notation, it can be express as
  • \(O \subset W\), \(O \not\subset N\)
  • \(O \in N\), \(O \notin W\)
  • \(O \subset N\), \(O \not\subset W\)
  • \(O \in W\), \(O \notin N\)
2)
Let A={1,2,3,4,5} then,
  • \(2 \subset A\)
  • \(2 \in A\)
  • \(8 \in A\)
  • \(8 \subset A\)
3)
The roster form of{x|x is an integer, \(-1< x \leq 3\) is
  • {-1,0,1,2,3}
  • {0,1,2}
  • {0,1,2,3}
  • {-1,0,1,2}
4)
The set builder form of set A={1,2,4,8} is
  • \({x|x\in N,x=2^{n}}\)
  • \({x:x=2^{n},n\in N}\)
  • \({x|x\in N,x=2^{n},1 \leq n <3}\)
  • \({x|x\in W,x=2^{n}, 0 \leq n \leq 4}\)
5)
The set builder form of the set B={\(\frac{1}{2},\frac{2}{3},\frac{3}{4},\frac{4}{5}\)} is
  • {\(x|x=\frac{n}{n+1},1\leq n\leq 4\)}
  • {\(x|x=\frac{n}{n+1},0\leq n <4\)}
  • {\(x|x=\frac{n}{n+1},0\leq n\leq 4\)}
  • {\(x|x=\frac{n}{n+1},1\leq n < 4\)}

Hide

Forgot your password?

Close

Error message here!

Hide

Lost your password? Please enter your email address. You will receive a link to create a new password.

Back to log-in

Close