1. Show that \(\cos18^{o}+\cos162^{o}+\cos234^{o}+\cos306^{o}=0\)
Solve: LHS \(\cos18^{o}+\cos162^{o}+\cos234^{o}+\cos306^{o}\) =\(\cos18^{o}+\cos(90^{o}\times2-18^{o})+\cos(90^{o}\times2+54^{o})+\cos(90^{o}\times4-54^{o})\) =\(\cos18^{o}-\cos18^{o}-\cos54^{o}+\cos54^{o}\) =0=RHS (Proved)
2. Find the value of \(\tan\frac{3\pi}{20}\tan\frac{4\pi}{20}\tan\frac{5\pi}{20}\tan\frac{6\pi}{20}\tan\frac{7\pi}{20}\)Solve: \(\tan\frac{3\pi}{20}\tan\frac{4\pi}{20}\tan\frac{5\pi}{20}\tan\frac{6\pi}{20}\tan\frac{7\pi}{20}\) =\(\tan\frac{3\pi}{20}\tan\frac{4\pi}{20}\tan\frac{\pi}{4}\tan\Big(\frac{\pi}{2}-\frac{4\pi}{20}\Big)\tan\Big(\frac{\pi}{2}-\frac{3\pi}{20}\Big)\) =\(\tan\frac{3\pi}{20}\tan\frac{4\pi}{20}.1.\cot\frac{4\pi}{20}\frac{3\pi}{20}\) =1 Ans
3. Show that \(\cos^{2}\frac{\pi}{4}+\sin^{2}\frac{3\pi}{4}+\sin^{2}\frac{5\pi}{4}+\sin^{2}\frac{7\pi}{4}\)=2Solve: LHS=\(\cos^{2}\frac{\pi}{4}+\sin^{2}\frac{3\pi}{4}+\sin^{2}\frac{5\pi}{4}+\sin^{2}\frac{7\pi}{4}\) =\(\cos^{2}\frac{\pi}{4}+\sin^{2}(\frac{\pi}{2}+\frac{\pi}{4})+\sin^{2}(\pi+\frac{\pi}{4})+\sin^{2}(2\pi-\frac{\pi}{4})\) =\(\cos^{2}\frac{\pi}{4}+\cos^{2}\frac{\pi}{4}+\sin^{2}\frac{\pi}{4}+\sin^{2}\frac{\pi}{4}\) =\(2(\cos^{2}\frac{\pi}{4}+\sin^{2}\frac{\pi}{4})\) =2 Ans