Given the complex number:
z = 3a + i√(a⁴ - 7a² + 1)
We aim to find √z
. Let:
√z = x + iy
Then, squaring both sides:
z = (x + iy)² = x² - y² + 2ixy
Comparing real and imaginary parts:
x² - y² = 3a ...(1)
2xy = √(a⁴ - 7a² + 1) ...(2)
From (2):
xy = ½√(a⁴ - 7a² + 1)
Let S = x² + y²
and D = x² - y² = 3a
. Then:
x² = (S + D)/2
y² = (S - D)/2
x²y² = [(S² - D²)/4] = ¼(a⁴ - 7a² + 1)
Substitute D = 3a
:
S² - 9a² = a⁴ - 7a² + 1
⇒ S² = a⁴ + 2a² + 1 = (a² + 1)²
⇒ S = a² + 1
Now compute x²
and y²
:
x² = (a² + 1 + 3a)/2 = (a² + 3a + 1)/2
y² = (a² + 1 - 3a)/2 = (a² - 3a + 1)/2
So the square root of z
is:
√z = √[(a² + 3a + 1)/2] + i√[(a² - 3a + 1)/2]
Note: The sign may vary based on quadrant conventions.