Convert the following complex numbers in Polar form (i) \frac{-16}{1+i\sqrt{3}} (ii) \frac{1+7i}{(2-i)^2} (iii) \frac{i-1}{\cos\frac{\pi}{3}+i\sin\frac{\pi}{3}}
Solve:
First, multiply numerator and denominator by the conjugate of the denominator:
\[
\frac{-16}{1 + i\sqrt{3}} \cdot \frac{1 - i\sqrt{3}}{1 - i\sqrt{3}} = \frac{-16(1 - i\sqrt{3})}{1^2 - (i\sqrt{3})^2} = \frac{-16(1 - i\sqrt{3})}{1 + 3}
\]
\[
= \frac{-16(1 - i\sqrt{3})}{4} = -4(1 - i\sqrt{3}) = -4 + 4i\sqrt{3}
\]
Let \( x = -4, y = 4\sqrt{3} \)
\( r = \sqrt{(-4)^2 + (4\sqrt{3})^2} = \sqrt{16 + 48} = \sqrt{64} = 8 \)
\( \cos\theta = \frac{-4}{8} = -\frac{1}{2},\ \sin\theta = \frac{4\sqrt{3}}{8} = \frac{\sqrt{3}}{2} \)
So, \( \theta = \frac{2\pi}{3} \)
Polar Form: \( z = 8\left( \cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3} \right) \)
First compute \( (2 - i)^2 \):
\[
(2 - i)^2 = 4 - 4i + i^2 = 4 - 4i - 1 = 3 - 4i
\]
So we compute:
\[
\frac{1 + 7i}{3 - 4i}
\]
Multiply numerator and denominator by the conjugate:
\[
\frac{1 + 7i}{3 - 4i} \cdot \frac{3 + 4i}{3 + 4i} = \frac{(1 + 7i)(3 + 4i)}{3^2 + 4^2}
\]
Numerator:
\[
1 \cdot 3 + 1 \cdot 4i + 7i \cdot 3 + 7i \cdot 4i = 3 + 4i + 21i + 28i^2 = 3 + 25i - 28 = -25 + 25i
\]
Denominator: \( 9 + 16 = 25 \)
So:
\[
\frac{-25 + 25i}{25} = -1 + i
\]
Let \( x = -1, y = 1 \)
\( r = \sqrt{(-1)^2 + 1^2} = \sqrt{2} \)
\( \cos\theta = -\frac{1}{\sqrt{2}},\ \sin\theta = \frac{1}{\sqrt{2}} \Rightarrow \theta = \frac{3\pi}{4} \)
Polar Form: \( z = \sqrt{2}\left( \cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4} \right) \)
Use the identity: \( \cos\theta + i\sin\theta = \text{cis}(\theta) \)
So this is:
\[
\frac{i - 1}{\text{cis}\left(\frac{\pi}{3}\right)}
\]
Let’s write numerator in rectangular form: \( -1 + i \)
First, write \( -1 + i \) in polar form:
\( r = \sqrt{1^2 + 1^2} = \sqrt{2} \), and since it lies in 2nd quadrant:
\( \theta_1 = \frac{3\pi}{4} \)
So:
\[
\frac{-1 + i}{\text{cis}\left(\frac{\pi}{3}\right)} = \frac{\sqrt{2}\ \text{cis}\left(\frac{3\pi}{4}\right)}{\text{cis}\left(\frac{\pi}{3}\right)} = \sqrt{2}\ \text{cis}\left(\frac{3\pi}{4} - \frac{\pi}{3}\right)
\]
\[
= \sqrt{2}\ \text{cis}\left(\frac{5\pi}{12}\right)
\]
Polar Form: \( z = \sqrt{2}\left( \cos\frac{5\pi}{12} + i\sin\frac{5\pi}{12} \right) \)