Problem related to section formula

Eleven Standard >> Problem related to section formula

 

 

Proving the Midpoint Line Theorem in a Triangle Using Vector Method

 

Problem Statement: Prove using vectors that the line segment joining the midpoints of two sides of a triangle is parallel to the third side and has half its length.

Given:

Let O be the origin of reference in a coordinate system. Consider a triangle ABC where the position vectors of the vertices are:
\( \overrightarrow{OA} = \overrightarrow{a} \), \( \overrightarrow{OB} = \overrightarrow{b} \), \( \overrightarrow{OC} = \overrightarrow{c} \)

Let point D be the midpoint of side AB:
\( \overrightarrow{OD} = \frac{\overrightarrow{a} + \overrightarrow{b}}{2} \)

Let point E be the midpoint of side AC:
\( \overrightarrow{OE} = \frac{\overrightarrow{a} + \overrightarrow{c}}{2} \)

To Prove:

  • \( \overrightarrow{DE} \parallel \overrightarrow{BC} \)
  • \( \overrightarrow{DE} = \frac{1}{2} \overrightarrow{BC} \)

Proof Using Vectors:

Find the vector from D to E:
\( \overrightarrow{DE} = \overrightarrow{OE} - \overrightarrow{OD} \)

Substitute the values:
\( \overrightarrow{DE} = \left( \frac{\overrightarrow{a} + \overrightarrow{c}}{2} \right) - \left( \frac{\overrightarrow{a} + \overrightarrow{b}}{2} \right) \)

Simplify:
\( \overrightarrow{DE} = \frac{\overrightarrow{c} - \overrightarrow{b}}{2} \)

Now compute vector \( \overrightarrow{BC} \):
\( \overrightarrow{BC} = \overrightarrow{OC} - \overrightarrow{OB} = \overrightarrow{c} - \overrightarrow{b} \)

Hence:
\( \overrightarrow{DE} = \frac{1}{2} \overrightarrow{BC} \)

Since \( \overrightarrow{DE} \) is a scalar multiple of \( \overrightarrow{BC} \), the vectors are parallel. The scalar factor \( \frac{1}{2} \) also confirms that the length of \( \overrightarrow{DE} \) is half the length of \( \overrightarrow{BC} \).

Therefore, it is proved: The line segment joining the midpoints of two sides of a triangle is parallel to the third side and equal to half its length.

Hide

Forgot your password?

Close

Error message here!

Hide

Lost your password? Please enter your email address. You will receive a link to create a new password.

Back to log-in

Close