Properties of logarithm

Eleven Standard >> Properties of logarithm

Click the green "Start" button for MCQ.

 

Properties of logarithm

 

When the base of the logarithm is 'e' then it is called the natural logarithm.

When the base of the logarithm is 10, then it is called the common logarithm.

Basic properties of logarithm:

1) \(a^{\log_{a}{x}}=x\), if x>0
2) \(\log_{a}{a^{x}}=x\), for all \(x \in R\)

Rule of logarithm:

Rule 1. \(\log_{a}{1}=0\)
           \(\Rightarrow a^{0}=1\)

Rule 2. \(\log_{a}{a}=1\)
           \(\Rightarrow a^{1}=a\)

If a, b, M, N are positive real numbrs, (a≠1, b≠1), the following rules are applicable

Rule 3. \(\log_{a}{(MN)}=\log_{a}{M}+\log_{a}{N}\)

Proof: Let \(\log_{a}{M}=x\) and \(\log_{a}{N}=y\)
 \(\Rightarrow a^{x}=M\) and \(a^{y}=N\)
  \(MN=a^{x}.a^{y}=a^{x+y}\)
 \(\log_{a}{MN}=x+y\)=\(\log_{a}{M}+\log_{a}{N}\)

Rule 4. \(\log_{a}{\Big(\frac{M}{N}\Big)}=\log_{a}{M}-\log_{a}{N}\)

Proof: \(\log_{a}{M}=x\), \(\log_{a}{N}=y\)
\(\Rightarrow a^{x}=M\), \(a^{y}=N\)
\(\frac{M}{N}=\frac{a^{x}}{a^{y}}=a^{x-y}\)
\(\Rightarrow\) \(\log_{a}{\Big(\frac{M}{N}\Big)}=x-y=\log_{a}{M}-\log_{a}{N}\)

Rule 5. \(\log_{a}{M^{n}}=n\log_{a}{M}\)

Proof: Let \(\log_{a}{M^{n}}=x\)
\(\Rightarrow a^{x}=M^{n}\) and \(\log_{a}{M}=y\Rightarrow a^{y}=M\)
Now \(a^{x}=M^{n}=(a^{y})^{n}=a^ny\)
\(\Rightarrow x=ny\)
\(\Rightarrow \log_{a}{M^{n}}=n\log_{a}{M}\)
 

Hide

Forgot your password?

Close

Error message here!

Hide

Lost your password? Please enter your email address. You will receive a link to create a new password.

Back to log-in

Close