The integral of \( \sqrt{x^2 + a^2} \) often appears in arc length problems, area calculations, and physics applications. To evaluate:
\[
\int \sqrt{x^2 + a^2} \, dx
\]
we use trigonometric substitution.
This transforms the radical expression:
\[
\sqrt{x^2 + a^2} = \sqrt{a^2 \tan^2\theta + a^2} = a \sec\theta
\]
and the differential becomes:
\[
dx = a \sec^2\theta \, d\theta
\]
\( \int \sqrt{x^2 + a^2} \, dx = \int a \sec\theta \cdot a \sec^2\theta \, d\theta = a^2 \int \sec^3\theta \, d\theta \)
The standard result:
\[
\int \sec^3\theta \, d\theta =\] \[\frac{1}{2} \sec\theta \tan\theta + \frac{1}{2} \log | \sec\theta + \tan\theta | + C
\]
So:
\[
\int \sqrt{x^2 + a^2} \, dx =\] \[a^2 \left( \frac{1}{2} \sec\theta \tan\theta + \frac{1}{2} \log | \sec\theta + \tan\theta | \right) + C
\]
From the substitution \( x = a \tan\theta \):
\( \int \sqrt{x^2 + a^2} \, dx =\) \(\frac{x \sqrt{x^2 + a^2}}{2} + \frac{a^2}{2} \log \left| x + \sqrt{x^2 + a^2} \right| + C \)